Fachgebiet Ecology

Verena Rubel

Postdoc


Address

Erwin-Schroedinger-Street
Building 14, Room 262
67663 Kaiserslautern

Postbox 3049 
67663 Kaiserslautern

Contact

Tel.: +49 631 205 3253
E-Mail: v.rubel(at)rhrk.uni-kl.de

Curriculum Vitae

2022Ph.D., University of Kaiserslautern
2019M. Sc., University of Kaiserslautern
2017B. Sc., University of Kaiserslautern

Publications

 
2021

Dully V, Rech G, Wilding TA, Lanzén A, MacKichan K, Berrill I & Stoeck T

Comparing sediment preservation methods for genomic biomonitoring of coastal marine ecosystems.

Marine Pollution Bulletin 173: 113129, doi: 10.1016/j.marpolbul.2021.113129

 

Dully V, Wilding TA, Mühlhaus T & Stoeck T

Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning

Computational and Structural Biotechnolgy Journal 19: 2256-2268, doi: 10.1016/j.csbj.2021.04.005

 

Frühe L, Dully V, Forster D, Keeley NB, Laroche O, Pochon X, Robinson SMC, Wilding TA & Stoeck T

Global trends of benthic bacterial diversity and community composition along organic enrichment gradients of salmon farms

Frontiers in Microbiology (section Aquatic Microbiology) 12: 637811, doi: 10.3389/fmicb.2021.637811

 

 

2020

Dully V, Balliet H, Frühe L, Däumer M, Thielen A, Gallie S, Berril I & Stoeck T

Robustness, sensitivity and reproducibility of eDNA metabarcoding as an environmental biomonitoring tool in coastal salmon aquaculture - An inter-laboratory study.

Ecological Indicators, doi: 10.1016/j.ecolind.2020.107049

 

Frühe L, Cordier T, Dully V, Breiner HW, Lentendu G, Pawlowski J, Martins C, Wilding TA & Stoeck T

Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes.

Molecular Ecology, doi: 10.1111/mec15434

 

2018

Stoeck T, Pan H, Dully V, Forster D & Jung T

Towards an eDNA metabarcode-based performance indicator for full-scale municipal wastewater treatment plants.

Water Research, doi: 10.1016/j.watres.2019.07.051

2021

Predicting classifications in marine biomonitoring with supervised machine learning: how much data is required?

1. DNAqua International Conference, Evian, France

2021

Towards a standard protocol in coastal aquaculture biomonitoring: an interlaboratory study to assess reproducibility of the wet lab protocol and of Illumina sequencing (poster)

1. DNAqua International Conference, Evian, France

2020

Inter-laboratory reproducibility of machine learning predictions in applied environmental coastal monitoring

Faculty meeting, University of Kaiserslautern

2021

Award for the best student oral presentation

1. DNAqua International Conference, Evian, France

2020

Award for an outstanding Master thesis

Kreissparkassen-Stiftung Kaiserslautern

Zum Seitenanfang