Verena Rubel
Postdoc
Address
Erwin-Schroedinger-Street
Building 14, Room 262
67663 Kaiserslautern
Postbox 3049
67663 Kaiserslautern
Contact
Tel.: +49 631 205 3253
E-Mail: verena.rubel(at)rptu.de
Curriculum Vitae
2022 | Ph.D., University of Kaiserslautern |
2019 | M. Sc., University of Kaiserslautern |
2017 | B. Sc., University of Kaiserslautern |
Publications
2023
Leontidou K, Abad-Recio IL, Rubel V, Filker S, Däumer M, Thielen A, Lanzén A & Stoeck T
Simultaneous analysis of seven 16S rRNA hypervariable gene regions increases efficiency in marine bacterial diversity detection.
Environmental Microbiology, doi: 10.1111/1462-2920.16530
Leontidou C, Rubel V & Stoeck T
Comparing quantile regression spline analyses and supervised machine learning for environmental quality assessment at coastal marine aquaculture installations.
PeerJ 11:e15425, doi: 10.7717/peerj.15425
2021
Dully V, Rech G, Wilding TA, Lanzén A, MacKichan K, Berrill I & Stoeck T
Comparing sediment preservation methods for genomic biomonitoring of coastal marine ecosystems.
Marine Pollution Bulletin 173: 113129, doi: 10.1016/j.marpolbul.2021.113129
Dully V, Wilding TA, Mühlhaus T & Stoeck T
Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning
Computational and Structural Biotechnolgy Journal 19: 2256-2268, doi: 10.1016/j.csbj.2021.04.005
Frühe L, Dully V, Forster D, Keeley NB, Laroche O, Pochon X, Robinson SMC, Wilding TA & Stoeck T
Global trends of benthic bacterial diversity and community composition along organic enrichment gradients of salmon farms
Frontiers in Microbiology (section Aquatic Microbiology) 12: 637811, doi: 10.3389/fmicb.2021.637811
2020
Dully V, Balliet H, Frühe L, Däumer M, Thielen A, Gallie S, Berril I & Stoeck T
Robustness, sensitivity and reproducibility of eDNA metabarcoding as an environmental biomonitoring tool in coastal salmon aquaculture - An inter-laboratory study.
Ecological Indicators, doi: 10.1016/j.ecolind.2020.107049
Frühe L, Cordier T, Dully V, Breiner HW, Lentendu G, Pawlowski J, Martins C, Wilding TA & Stoeck T
Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes.
Molecular Ecology, doi: 10.1111/mec15434
2018
Stoeck T, Pan H, Dully V, Forster D & Jung T
Towards an eDNA metabarcode-based performance indicator for full-scale municipal wastewater treatment plants.
Water Research, doi: 10.1016/j.watres.2019.07.051
2024 | The infancy of MANIDE: Machine learning driven Assessment of polymetallic Nodule mining Impacts on Deep-sea Ecosystems (poster) Helmholtz Data Science Symposium 2024, Bremen, Germany |
2023 | Current state-of-the-art in eDNA-based benthic biomonitoring of salmon aquaculture installations (poster & flash talk) Aquaculture Europe 2023, Vienna, Austria |
2022 | Translating Illumina®-derived massive sequence data into biologically meaningful information for biomonitoring via supervised machine learning (invited talk) INTECOL (INTECOL CONFERENCE - Frontiers in Ecology: Nature and Society), Workshop on environmental DNA for biodiversity monitoring and conservation, Geneva, Switzerland |
2021 | Predicting classifications in marine biomonitoring with supervised machine learning: how much data is required? 1. DNAqua International Conference, Evian, France |
2021 | Towards a standard protocol in coastal aquaculture biomonitoring: an interlaboratory study to assess reproducibility of the wet lab protocol and of Illumina sequencing (poster) 1. DNAqua International Conference, Evian, France |
2020 | Inter-laboratory reproducibility of machine learning predictions in applied environmental coastal monitoring Faculty meeting, University of Kaiserslautern |
2023 | Award for the best poster Aquaculture Europe 2023, Vienna, Austria |
2021 | Award for the best student oral presentation 1. DNAqua International Conference, Evian, France |
2020 | Award for an outstanding Master thesis Kreissparkassen-Stiftung Kaiserslautern |